Evaluation Framework for MOST Based Driver Assistance System Based on Virtual Prototypes

23rd April 2013

Jyoti Joshi
Sebastian Reiter
Alexander Viehl
Oliver Bringmann
Wolfgang Rosenstiel
Motivation

Advanced Driver Assistance Systems (ADAS)

- Continuously increasing number of ADAS in modern vehicles
- Driver assistance and comfort systems
- Driver safety systems
Motivation

Advanced Driver Assistance Systems (ADAS)

- ADAS use complex algorithms e.g. FFT or Hough Transformation
- Dedicated pre-processing nodes with optimized hardware
- For efficient information sharing communication network is the backbone
Motivation

Advanced Driver Assistance Systems (ADAS)

- Sensors, processing units and actuators distributed all over the vehicle
- ADAS interact with different electrical/electronic systems clusters
- ADAS have to share the inputs with electronic systems
- Challenge – efficient information sharing
- Communication network analysis with different scenarios
- Communication network optimization
Agenda

- Motivation
- Evaluation Framework
 - Concept
 - Scenario configuration
 - Data analysis and parameter optimization
 - Benefits
- Use Case Scenario 1: MOST based ADAS
 - Structure of the used framework
 - Distributed ADAS
 - Influence of the communication technology
- Use Case Scenario 2: Shared Packet Channel
 - Structure of the used virtual prototype
 - Evaluation
- Conclusion
Evaluation Framework

- Concept
 - Simulation based
 - Modularity and generic Approach
 - A number of basic modules in C++/SystemC - basic building blocks
 - Modules can be aggregated to build desired system scenarios
 - E.g. the ADAS use case scenario is assembled using 150 modules
Evaluation Framework

- Scenario configuration
 - Define the modules
 - Define the interconnections
 - System scenario can be changed during runtime
Evaluation Framework

- Data Analysis and Parameter Optimization
 - User defined data access points
 - Simultaneous data monitoring at different junctions
 - Data capturing, monitoring and comparing
 - Analysis of the modeled data
 - Parameter optimization
Evaluation Framework

- **Benefits**
 - Easy building of different scenarios
 - Functional and timing verification
 - Performance analysis
 - Parameter optimization
 - Easy integration of new applications using IP components
Agenda

- Motivation
- Evaluation Framework
 - Concept
 - Scenario configuration
 - Data analysis and parameter optimization
 - Benefits
- Use Case Scenario 1: MOST Based ADAS
 - Structure of the used framework
 - Distributed ADAS
 - Influence of the communication technology
- Use Case Scenario 2: Shared Packet Channel
 - Structure of the used virtual prototype
 - Evaluation
- Conclusion
Use Case Scenario 1: MOST Based ADAS

- Structure of the used framework
 - Approximately 150 module instances
 - Communication over Isochronous Channel
Use Case Scenario 1: MOST Based ADAS

- Distributed ADAS
 - Stereo Depth Map – SDM
 - Traffic Sign Recognition – TSR

- Modules in the processing chain:
 - Camera left and camera right
 - Preprocessing module (Hough transformation)
 - Stereo Depth Map calculation module
 - Circle Detection module
 - Speed Sign Classification module
 - Human Machine Interface - HMI
Use Case Scenario 1: MOST Based ADAS

- Influence of the communication technology
 SDM calculation requires
 - Synchronous images from camera left and camera right
 - Different channel types can result in varying transmission delays
 - Isochronous channel best suited
Agenda

- Motivation
- Evaluation Framework
 - Concept
 - Scenario configuration
 - Data analysis and parameter optimization
 - Benefits
- Use Case Scenario 1: MOST based ADAS
 - Structure of the used framework
 - Distributed ADAS
 - Influence of the communication technology
- Use Case Scenario 2: Shared Packet Channel
 - Structure of the used virtual prototype
 - Evaluation
- Conclusion
Use Case Scenario 2: Shared Packet Channel

- Data access points
Use Case Scenario 2: Shared Packet Channel

- Detailed insight in the system behavior
- Analysis using standard tools Matlab GUI, Wireshark, OptoLyzer

![Graph showing network traffic analysis](image)
Agenda

- Motivation
- Evaluation Framework
 - Concept
 - Scenario configuration
 - Data analysis and parameter optimization
 - Benefits
- Use Case Scenario 1: MOST based ADAS
 - Structure of the used framework
 - Distributed ADAS
 - Influence of the communication technology
- Use Case Scenario 2: Shared Packet Channel
 - Structure of the used virtual prototype
 - Evaluation
- Conclusion
Conclusion

- Advantages of the virtual prototype based framework
 - Different used case scenarios can be easily configured
 - Module as well as system performance can be analyzed
 - System can be optimized
 - Already existing tools can be coupled for the data analysis

- Advantages of MOST for ADAS
 - Different channels can be used simultaneously
 - For SDM isochronous channel is the most suitable channel
 1-to-n communication, stable average latency
 - Different protocols (MHP and TCP/IP) can be used over the shared packet channel
Thank you for your attention!